Mexican and Western Corn Rootworm

Identification. Adults of the Mexican corn rootworm are about 1/4-inch long and pale to bright green (Figure 1). Wing covers may match the body color or may have slightly contrasting yellow or orange-green stripes. Western corn rootworm adults are yellowish tan and have black stripes on the wings (Figure 2). The larvae are cream colored and about 3/4-inch long when fully developed, with a brown head capsule and bearing three pairs of short legs.

Biology. Mexican and western corn rootworms are quite similar in their biology and the type of damage they cause. Both species have one generation per year, unlike MCR and WCR which have one generation.

In-season root digs and scouting are important components for managing corn rootworm.

Comprehensive management strategies include rotation, scouting, insecticide applications when warranted, and planting corn products with insect trait protection.

Scouting. In-season root damage assessments are an important part of managing corn rootworm (MCR, WCR, SCR) because they help to evaluate CRW pressure and compare different control measures. Root damage is greatest when the majority of larvae have completed the 3rd instar larval stage. Often this is around tasseling. Usually there is a 2 to 3 week window that is optimum for root digging. Select 3 random locations in a field and dig 5 consecutive root balls to rate root injury. Three root nodes on each plant should be evaluated, starting with the uppermost node which has all of the roots at least 1.5 inches into the soil (Figure 4). To assign a damage rating, assess the root pruning and scarring using the 0 to 3 Node-Injury Scale (NIS). Generally, under good growing conditions, an NIS rating of 1.0 indicates that economic loss may occur.

In-crop beetle counts can help determine if foliar-applied insecticides are needed to reduce beetle silk feeding and ear damage. Scout for beetles at least once each week, beginning at early tassel. Randomly select 10 to 25 locations within the field and count the total number of beetles on at least two plants within each location. The ear zone method samples only the middle part of the plant surrounding the ear (the lower surface of the leaf above the ear, the ear and ear leaf, and the upper surface of the leaf below the ear). Yellow sticky traps can be spaced out over a field to sample rootworm beetle numbers. Traps are placed at ear level on corn plants; checked weekly and the number of trapped beetles counted.

Management. In continuous corn rotations, an average of one or more adult beetles per plant on any sampling date during the season may indicate the need to treat corn the next season to prevent economic damage. Plant corn products with Genuity® VT Triple PRO® or Genuity® SmartStax® traits, or use a soil-applied insecticide.

Insect Resistance Management. A comprehensive Integrated Pest Management plan is a key factor for sustaining maximum corn yield potential, particularly in continuous corn rotations. Corn products with Genuity® VT Triple PRO® or Genuity® SmartStax® traits require a 20% structured refuge in the Cotton-Growing Area. Growers must read the IRM Grower Guide prior to planting for details on planting a refuge, geographical restrictions, and other requirements of the IRM Plan. The IRM Grower Guide is on the seed bag tag or ask your seed dealer for information. Monsanto does not recommend the planting of seed blend products in the Cotton-Growing Area. If seed blend products are planted, an additional 20% structured refuge is required.
Southern Corn Rootworm

Identification. The adult SCR is about 1/4-inch long, yellow-green with a black head and antennae (Figure 2). There are twelve black spots on the wing covers. The larvae are cream colored and about 3/4-inch long when fully developed, with a brown head capsule and bearing three pairs of short legs.

Biology. Adult beetles overwinter and become active in the spring, feeding on a wide variety of host plants including weeds and grasses. Adults first become active about the middle of March and lay eggs from late April to early June. Eggs are laid in the soil in emerging corn. Eggs hatch in 5 to 11 days and young larvae crawl through the soil and feed on roots of corn, sorghum, or other hosts. Larvae develop through three stages (instars) in 10 to 16 days before pupating and then emerge as adults after 5 to 12 days. Development takes about 20 to 39 days, depending on soil temperature. SCR have multiple generations per year, unlike MCR and WCR which have one generation per year.

The SCR prefers moist soil and is most injurious to corn during cold, wet springs. No-till corn, continuous corn rotations, or corn following winter legumes are most at-risk. Both the adults and larvae damage corn is approximately 6 inches tall. Look for symptoms of water stress plants, including unpollinated corn silks.

Management. Because SCR deposit eggs in emerging corn, crop rotation may not provide adequate control. Several cultural practices may help reduce the southern corn rootworm population. Early tillage at least 30 days before planting corn removes vegetation and discourages egg-laying. Plant early at high seeding rates to get a good stand. Seed applied insecticides may provide protection if SCR infestations are light to moderate but soil-applied insecticides provide control under heavy infestations. None of the commercial products with insect trait protection are effective against SCR.

Best Management Practices (BMPs)

BMPs provide practical solutions to reduce rootworm populations, limit rootworm damage, and enable insect resistance management.

- Rotate to non-host crops to break the corn rootworm cycle.
- Use insecticides as needed. Soil moisture status, application timing, and placement are important for insecticides to protect plants for the duration of the larval feeding period.
- Plant dual mode-of-action corn products with Genuity® SmartStax® or Genuity® VT Triple PRO® traits to help manage MCR and WCR.
- Scout regularly for:
 - Early-season SCR damage.
 - Conduct root digs to assess root damage from larval feeding.
 - Around tasseling, monitor MCR and WCR beetle populations to determine if control measures are needed to protect silks and ears. Monitoring at tassel can also help predict infestation levels for the next corn crop.

Successful corn rootworm management is possible by using multiple management strategies such as rotation, scouting, insecticide applications when warranted, and by planting corn products with Genuity® SmartStax® and Genuity® VT Triple PRO® traits in a comprehensive management plan.

Figure 4. Corn root nodes and rootworm feeding damage.

Figure 4. Corn root nodes and rootworm feeding damage.